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Abstract

Introduction: In Alzheimer’s disease (AD), cognitive decline is driven by various inter-

linking causal factors. Systems thinking could help elucidate this multicausality and

identify opportune intervention targets.

Methods:We developed a system dynamics model (SDM) of sporadic AD with 33 fac-

tors and 148 causal links calibrated with empirical data from two studies. We tested

the SDM’s validity by ranking intervention outcomes on 15 modifiable risk factors to

two sets of 44 and 9 validation statements based on meta-analyses of observational

data and randomized controlled trials, respectively.

Results:TheSDManswered77%and78%of the validation statements correctly. Sleep

quality and depressive symptoms yielded the largest effects on cognitive decline with

which they were connected through strong reinforcing feedback loops, including via

phosphorylated tau burden.

Discussion: SDMs can be constructed and validated to simulate interventions and gain

insight into the relative contribution of mechanistic pathways.
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2 ULEMAN ET AL.

RESEARCH INCONTEXT

1. Systematic review: We reviewed Alzheimer’s disease

(AD) studies related to complexity science. We observed

an increasing interest in multicausal AD paradigms and

applying systems thinking methods to AD. To our knowl-

edge, the system dynamics model (SDM) we present is

the most comprehensive computational model of AD’s

multicausality to date.

2. Interpretation: We demonstrated that SDMs can be sys-

tematically constructed, estimated, and validated based

on literature, expert knowledge, and empirical data. As a

use-case, we simulated interventions to rank modifiable

risk factors for cognitive decline prevention. This ranking,

in which sleep quality and depressive symptoms had the

largest effects, was in line with observational (77%) and

interventional (78%)meta-analyses.

3. Future directions: Our SDMoffers a basis for further elu-

cidating AD’s multifactorial etiology using additional sci-

entific knowledge sources. Thiswould require an iterative

cycle in which neuroscience researchers and computa-

tional scientists share their resources in a joint approach.

1 NARRATIVE

1.1 Contextual background

Alzheimer’s disease (AD) is increasingly regarded as a complex dis-

order driven by a multitude of causal factors.1–3 This multicausality

includes neurobiological and psychosocial mechanisms that underlie

the loss of neuronal functioning from which AD’s cognitive and behav-

ioral features emerge.4 To better understand this complex process of

cognitive decline, a growing number of researchers in the field call for

the adoption of complexity science methods and, in particular, a sys-

tems thinking approach.5–8 Complexity science in this field generally

means research focused on understanding how mechanisms or pro-

cesses and their connecting pathways lead to emergent phenomena

such as resilience and cognitive decline.8 Systems thinking is a related

viewpoint thatmoves beyondmonocausal characterizations by consid-

ering the multifactorial etiology of complex disorders as a whole and

examining the underlying relationships across space and time.9

Through the lens of systems thinking, the multiscale multicausal-

ity paradigm of AD (Figure 1) may serve as a unifying framework

to help connect the dots of AD’s putative upstream variables (e.g.,

vascular2,3 and metabolic factors,10 inflammation,11 comorbid condi-

tions and other risks12) and downstreamneurodegenerative processes

(e.g., massive loss of synaptic and neuronal functioning, and cognitive

decline). These variables include the pathophysiological processes in

Figure 1: interactions among apoE-4 carriership, neuroinflammation,11

and the accumulation of amyloid and phosphorylated tau, resulting in

F IGURE 1 Themultiscale multicausality paradigm of sporadic
Alzheimer’s disease. Decreasing time scales (x-axis) are shownwith
examples of constant or slowly changing variables on the left (square),
for example, low education level, gradually changing in themiddle
(hexagon), for example, cognitive decline, and rapidly changing shown
on the right (circle), for example, neuroinflammation. On the y-axis,
relevant spatial scales are shown in increasing order. Across these
spatiotemporal scales, opportunities can be identified for promoting
brain health (e.g., pharmacological interventions), physical health (e.g.,
lifestyle interventions) and psychosocial health (e.g., psychological
interventions)4

dysfunction of neurons and neuronal networks13,14 at the cell and tis-

sue scales, disrupting brain health.On the other side of the spatial scale

spectrum, low education level12 can result in less physical activity15

and comorbidities, such as type 2 diabetes, hypertension, dyslipidemia,

and obesity,16 disrupting psychosocial and physical health at the indi-

vidual organism scale. Acting across these spatial scales, such factors

can influence one another and, ultimately, AD’s emergentmulti-system

organ failure and cognitive disorder through a complex web of causal

links.4 This multicausality is governed by a large number of feedback

loops, including cross-scale loops that are separated in space or time

and can thus be difficult to recognize in research that focuses on spe-

cific scientific disciplines.17 This involvement of feedback loops also

suggests that there is no set order of events as downstream variables

also influence upstream variables, such as cognitive decline leading

to low physical activity,18 limiting its protective effect against, for

instance, chronic inflammation, vascular dysfunction, andotherADrisk

factors.19 To characterize and analyze the combined effect of such pro-

cesses, they could first be mapped out and then studied in silico to

understand potential mechanistic routes. In turn, these routes can be

validated empirically.

Uncovering and subsequently integrating the web of multicausal-

ity that drives AD into a single computational model is equally

urgent as it is challenging.20 Namely, comprehensive computational
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ULEMAN ET AL. 3

models are needed to connect current theories and existing data

and to test and validate putative causal links. Such models can also

assess the relative importance of different risk factors because, unlike

non-mechanistic models that can only predict outcomes (e.g., for risk

assessment), implementing causal mechanisms allows for simulating

interventions.21,22 However, developing such comprehensive models

will require iterative development, many existing AD data sets and

extensive multidisciplinary collaboration.

As the starting point for developing a computational model,20 we

previously developed a conceptual multicausal mapping in the form of

a causal loop diagram (CLD), which summarized expert-solicited causal

links between many of the most important risk factors and patho-

physiological mechanisms in sporadic AD.4 This CLD resulted from the

consensus of 15 domain experts through group model building23 and

was supported by a literature review. TheCLD serves as a basis for sys-

temdynamicsmodels (SDMs).Whenadequately validated, theseSDMs

can be used to scrutinize mechanistic pathways and explore interven-

tional what-if scenarios,20,24,25 for example, to design new randomized

controlled trials (RCTs),26,27 or explore interventions that are difficult,

unethical, or even impossible to implement in RCTs.

Here, we describe the SDM we developed for sporadic AD based

on this CLD.4 We used empirical data from two AD studies to quan-

tify the CLD’s biopsychosocial pathways and feedback loops between

AD pathophysiology, risk factors, and their effects on cognitive func-

tioning. As a use-case, we then applied the SDM to AD prevention

with the key objective of assessing the validity of the SDM’s quantified

causal structure by simulating interventions on 15 modifiable risk fac-

tors. Although dementia prevention is promising26,28–31 and 40% and

56% of populations’ risks are attributed to potentially modifiable risk

factors,12,32 interventions on these factors in RCTs have shown mixed

results33–38 with highly variable adherence.30 This points to the prior-

itize the risk factors to be tested in clinical studies.30 Insights obtained

from an SDM can potentially accelerate this process.

1.2 Study design

The SDM models a heterogeneous population of persons without

dementia (at baseline) aged ≥ 55 years and simulates 5-year cogni-

tive decline trajectories. The model was trained on data from both

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Hellenic

Longitudinal Investigation of Aging and Diet (HELIAD) studies, which

covered nearly all the risk factors and the pathophysiological mech-

anisms (together referred to as “nodes”) included in the CLD.4 The

features available in these data sets were then used to operationalize

each CLD node as closely as possible.

Once the data were selected, we started the SDM’s development

by labeling the nodes as auxiliaries (changing rapidly), stocks (chang-

ing gradually), and constants (very slowly or not changing). These labels

were selected based on how fast we assumed the nodes to change

relative to the assumed time scale of noticeable differences in cog-

nitive decline (3 months) and within the total simulation time of 5

years. The SDM with corresponding labels is shown in Figure 2 and

an interactive version is provided online.39 Many of the nodes and

links are aggregates that encompassmore specific biological pathways,

for example, neuronal dysfunction might encompass intracellular pro-

cesses like mitochondrial dysfunction. If found to be important, such

aggregates can be further elucidated in futuremodeling iterations.

We then estimated the strength of the 148 causal links in this

SDM using data from the selected features from both studies. In our

relatively short simulation time, these links were assumed to be lin-

ear (i.e., additive). We applied Bayesian inference to incorporate prior

knowledge of the links’ polarities (i.e., + or -) and characterized the

parameters’ uncertainty based on the corresponding posterior prob-

ability distribution. The parameter values with the highest posterior

probability, that is, maximum a posteriori (MAP), and the parameters’

standard deviations relative to the MAP are illustrated in Figure 2 as

the arrow size and greyscale, respectively.

Once the model parameters were estimated, we tested the validity

of the SDM. We first estimated its predictive accuracy by simulating

5-year trajectories of the 11 stocks for unseen individuals from inde-

pendent test data. Specifically, we compared the MAP to a reference

model in which the stocks changed over time with their population

average in all individuals. Although point prediction is not the princi-

pal aimof SDMs,40 this comparisonassesseswhether theSDMpredicts

individual trajectories better thanmaking the naïve assumption that all

individuals have equal progression.

Next, we simulated interventions on 15 modifiable risk factors

by perturbing them with one standard deviation in 1000 randomly

drawn samples from the posterior. We then ranked the risk factors

by their effect on cognitive functioning (Alzheimer’s Disease Assess-

ment Scale [ADAS-cog-13 scale]) after 5 years and compared this

ranking to two sets of validation statements20,24 that were derived

from meta-analyses. The first set contained 44 observational valida-

tion statements based on relative risk (RR) ratios from observational

data.12 For instance, one such statement asserted that an interven-

tion on depressive symptoms (RR: 1.9 for dementia) should have a

larger effect than an intervention on smoking (RR: 1.6). The second

set contained nine interventional validation statements based on stan-

dardizedmean differences (SMD) fromRCTs and their durations.29 For

instance, one such statement asserts that an intervention on physi-

cal activity (SMD per year: 1.18) should have a larger effect than an

intervention on obesity (SMD per year: 0.65).

1.3 Main results

We assessed the predictive accuracy and ranking of simulated inter-

vention effects to assess the SDM’s validity. The average error on the

test data was 8% lower for the MAP than the reference model (Sec-

tion 3.7). The number of validation statements correctly answered by

the SDM was 34/44 (77%) and 7/9 (78%) for the MAP on the obser-

vational and interventional statements, respectively, and significantly

better than would be expected by chance (p< 0.001) (Section 3.7).

The modifiable risk factors with the strongest simulated interven-

tion effects were depressive symptoms and sleep quality (Figure 3).
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4 ULEMAN ET AL.

F IGURE 2 System dynamics model for ADwith nodes from the causal loop diagram (CLD) as stocks, auxiliaries, or constants, and
corresponding expert-solicited causal links (arrows) between them. R1-4 are examples of themany reinforcing feedback loops in themodel (see
Figure 4). Due to the CLD’s focus on degenerative processes, the SDMdoes not contain any balancing loops.4 The arrow size corresponds to the
link’s strength and is scaled to the standardizedmaximum a posteriori (MAP) parameter values. The grey scale corresponds to the uncertainty in
the parameters, with darker meaning a smaller standard deviation relative to theMAP. Agewas added as a predictor for the stocks and auxiliaries,
and gender was added as a predictor for just the auxiliaries (not shown). An interactive version of this diagram can be found online39

F IGURE 3 Effects of simulated interventions on the 15modifiable
risk factors that entailed the addition of+/- one standard deviation at
baseline alternatively to each risk factor. The outcome (x-axis) was
quantified as the improvement in cognitive functioning (i.e., reduction
in ADAS-cog-13) after 5 years between simulations with andwithout
intervention. The simulated interventions were conducted for 1000
posterior samples. The dotted line represents the absence of an effect

To demonstrate how SDMs can be used to gain insight into the patho-

physiological processes underlying the effects of these risk factors,

four potentially important feedback loops are shown in Figure 4. These

loops are described below with estimated MAP parameters and cor-

responding 95% highest density intervals (i.e., the narrowest 95%

credibility interval). The parameters can be interpreted as follows. For

an auxiliary parameter, 0.5 means that one standard deviation change

in X gives 0.5 change in Y. For a stock parameter (annotated by *), 0.5

means that one standard deviation change in X gives 0.5 change in Y

over the simulation time of 5 years. First, both risk factors strongly

interlink: the strongest effect on sleep quality came from depressive

symptoms (0.30 [0.23, 0.36]), and sleep quality also influenced depres-

sive symptoms (0.12* [0.06, 0.21]), forming a reinforcing feedback loop

of length 2 (R1). Second, both factors have direct paths to cognitive

functioning. Sleep quality had the third strongest effect on cognitive

functioning (0.15* [0.06, 0.44]). The direct effect of depressive symp-

toms was less strong (0.12* [0.06, 0.19]), but cognitive functioning, in

turn, had the strongest effect on depressive symptoms (0.15* [0.04,

0.28]), forming additional reinforcing feedback loops of length 2 and 3:

R2 and R3, respectively. Finally, the strongest effect on cognitive func-

tioning came from neuronal dysfunction (0.62* [0.43, 0.72]), on which

the strongest effect came from (phosphorylated) tau burden (1.06*

[0.91, 1.31]). Tau burden was affected by sleep quality (0.17* [0.06,

0.28]), forming a longer cross-scale feedback loop of length 5 (R4) that

consists of multiple stocks, potentially playing an important mecha-

nistic role in the long-term effect of poor sleep quality on cognitive

decline. Other pathways from sleep quality and depressive symptoms,
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ULEMAN ET AL. 5

F IGURE 4 Interlinking feedback loops of the two highest rankedmodifiable risk factors (see Figure 3): sleep quality and depressive symptoms.
The arrow size corresponds to the link’s strength and is scaled to the standardizedmaximum a posteriori (MAP) parameter values. The grey scale
corresponds to the uncertainty in the parameters, with darker meaning a smaller standard deviation relative to theMAP

e.g., via experienced stress (0.04 [0, 0.11], 0.03 [0, 0.07], respectively;

not shown in Figure 4), appear to be less important.

1.4 Study conclusions and implications

We demonstrated that empirical data can be combined with expert-

solicited knowledge regarding AD’s system-wide multicausality in a

single computationalmodel to improveour understanding of themech-

anisms underlying cognitive decline. Furthermore, incorporating addi-

tional expert-solicited knowledge regarding the parameters’ polarities

with Bayesian inference improved the simulated interventions while

only minimally impacting the predictive accuracy (Section 3.7). While

ourmodel is intended as a proof of concept and requires further refine-

ment, it already simulated validated risk factor interventions based on

its inputs from one expert group,4 two data sets (ADNI and HELIAD),

and assuming linear functional relationships. Therefore, we conclude

that system dynamics is an effective methodology for synthesizing

knowledge on complex mechanisms that underlie AD and for quanti-

fying intervention effects on a broad range of risk factors. We expect

this may also be the case for other complex disorders.

The risk factors with the strongest simulated intervention effects

were sleep quality and depressive symptoms (Figure 3). Interest-

ingly, although they strongly correlate with AD,41,42 these factors

can also be symptoms of the disorder, which complicates teasing

out cause and effect in observational studies.12 Nevertheless, in the

SDM, their effects on cognitive functioning are likely not the result

of reverse causality. This is because their effects on cognitive func-

tioning are modeled over time, the reverse effects from cognitive

functioning are also modeled, and strong mechanistic pathways can

be identified that may underlie their effects (e.g., the reinforcing feed-

back loops in Figure 4). Consequently, we hypothesize that improving

sleep quality and limiting depressive symptoms in multidomain RCTs

might improve the efficacy of the interventions. However, evidence

on the effectiveness of preventive treatments on these two factors is

insufficient.29,43,44 Thus far, neither factor has been directly used as an

intervention in multidomain RCTs30 but such RCTs are currently being

conducted.45,46 The results of these trials will be another test for the

validity of the SDM.

1.5 Limitations and future directions

As all models are inevitably incomplete,47 the SDM presented here

also requires further elaboration. For instance, although the CLD is

based on the consensus of 15 experts and a supporting literature

review, important causal links may have been missed or falsely added.

Hence, future work might entail the development of a comprehen-

sive method for evidence triangulation48 that combines evidence for

the causal links from group model building,23 scientific literature, and

data-driven causal discovery methods.22 That said, the possible bias

introduced in our results by small mistakes in the SDM’s struture (e.g.,

literature bias) is likely small as, for instance, the correlation between

the simulated intervention ranking and the number of outgoing links

of the risk factors is not statistically significant (Spearman’s r = 0.40,

p = 0.14). Important nodes may also be missing in the SDM. One rea-

son is that such nodes, for example, air pollution,12 were not part of the

CLD. Another reason is that certain CLD nodes were not available in

the data. For instance, our data contained insufficient information on

glymphatic system functioning, which led us to replace it with a direct

causal link (Section 3.2). However, the glymphatic system may be an

important mechanism that not only relates sleep quality to amyloid

beta and tau burden,4,49 but head trauma (another high-ranked fac-

tor, Figure 3) as well.4 Including more intermediary variables like the

glymphatic system in the SDM could contribute to a deeper mecha-

nistic understanding of AD risk factors. Future work could then also

entail simulating interventionson suchpathophysiologicalmechanisms

through pharmacological interventions.

Another related limitation is the linear approximation of the short-

term causal effect of each link. Although we found this assumption

valid within the relatively short simulation time (section 3.2), it pre-

vented us from simulating longer than 5 years. Longer simulation times
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6 ULEMAN ET AL.

F IGURE 5 Schematic overview of the procedure we utilized for obtaining the system dynamics model from the causal loop diagram for AD.4

Yellow: model inputs; purple: general modeling steps

will be ultimately required to study AD prevention from a life-course

perspective, which will be needed to identify optimal risk factor inter-

ventions for different age groups.26,30 To that end, future work may

involve group model building sessions that target the functional forms

of causal links,20 combined with a model selection procedure that

identifies nonlinear links from the data. Such procedures would likely

improve the predictive accuracy of the SDM, which, while 8% better

thanpredicting only population averages (i.e., the referencemodel, sec-

tion 3.6), was still relatively low, with the simulated trajectories not

generallymatching individual deviations from the stock’s averageswell

(section 3.7). However, a data-drivenmodel selection procedurewould

require large, high-quality data sets containing thousands of subjects

and features covering most or all of the nodes in the SDM, highlighting

the need for harmonization efforts of longitudinal AD data sets.

Given the above limitations, we reiterate that the SDM is not a

final and accurate representation of reality but a starting point to

be systematically developed further. Here we applied such a system-

atic method, which can, in principle, be used to develop increasingly

comprehensive SDMs that encompass the best-evidenced risk fac-

tors and pathophysiological processes and are predominantly limited

by the current bounds of scientific knowledge. This limit is also an

opportunity. By synthesizing scientific knowledge, SDMs can iden-

tify critical sources of uncertainty that should be further elucidated,

for example, through the targeted collection of new data by neuro-

science or related domain researchers. As such, we envision SDMs

as part of an iterative inductive-deductive cycle, which takes various

sources of scientific knowledgeas input andproduces identified knowl-

edge gaps and falsifiable hypothesizes that can be tested in empirical

research.

2 CONSOLIDATED STUDY DESIGN

To develop the SDM, we followed an adaptation (Figure 5) of the sys-

tematic procedure for developing biopsychosocial SDMs from CLDs

outlined in Crielaard et al.,20 which is summarized in section 1.2 but

outlined in further detail in sections 2 and 3.

2.1 Data and feature selection

We used the Global Alzheimer’s Association Interactive Network

interrogator50 to identify a small number of data sets that covered as

many nodes from theCLDas possible. Ultimately, we selectedADNI, as

it contains most pathophysiological variables and risk factors from the

CLD and HELIAD, which covers several lifestyle factors missing in the

ADNI data. Section 3providesmore details regarding the data process-

ing (section 3.1.1) and selection of features to operationalize the nodes

(section 3.1.4). Table 1 provides an overview of the selected features

and their descriptive statistics at baseline.

2.2 Node labeling

We made assumptions regarding the time scales of the CLD nodes to

determine eachnode’s label in the SDMas a stock, auxiliary or constant

(Section3.2.1). Stocks are eachdescribedbyordinarydifferential equa-

tions, which model the slope of the stock at a particular time given the

values of the input nodes. A node is labeled as a stock if its time scale

(i.e., the approximate time to reach a new stable value given a change in

its input node values) is assumed to be within an order of magnitude of

the assumed time scale of cognitive functioning (i.e., 3 months). In turn,

auxiliaries are defined using (algebraic) regression equations, meaning

that their value changes instantly to a new stable value given the val-

ues of their input nodes, as opposed to changing gradually according

to a slope as a stock does. Finally, and on the opposite side of the time

scale spectrum, constants do not change but may appear on the right-

hand side of both the differential and algebraic equations. Section 3.2

provides further details on node labeling with sensitivity tests.

2.3 Selecting functional relationships

To enable the identification of the SDM’s differential (stock) and alge-

braic (auxiliary) equations, an assumptionhad tobemade regarding the

class of functional formulae to be considered. Given the considerable
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ULEMAN ET AL. 7

TABLE 1 Baseline characteristics of the preprocessed ADNI (N= 1762) data features

CLD node Data feature (units) Mean SD Missing Slope

Diagnosis (0: cognitively normal, 1: mild cognitive impairment) 0.56 0.50 0%

Age (years) 73.0 6.98 0.2%

Gender (0: female, 1: male) 0.53 0.50 0.0%

Auxiliaries

Experienced stress Cortisol plasma (ng/ml) 145 1.35 75%

Systemic inflammation TNF-alpha plasma (pg/ml) 6.76 1.86 75%

Brain perfusion Hippocampal CBF (ml/mg/min) 28.5 7.50 93%

Oxidative stress* Superoxide dismutase plasma (pg/ml) 45.7 1.74 75%

Neuroinflammation TNF-alpha CSF (pg/ml) 1.81 1.13 88%

Neuronal connectivity* Default mode network connectivity anterior-posterior ratio 0.99 0.21 93%

Physical activity** Physical activity score (1-10) 7.12 0.42 2%

Healthy dietary patterns** Mediterranean diet score (1-55) 34.9 1.01 1%

Sleep quality** Sleep Scale from theMedical Outcomes Study (1-54) 16.1 1.72 2%

Engagement in cognitively

demanding tasks**

Cognitive activities score (0-12) 4.46 0.50 1%

Stocks

Cognitive functioning* ADAS-cog-13 (0-85) 13.1 6.92 0.5% 0.96

Brain atrophy Hippocampal volume (mm3) 7132 1081 13% −131

Neuronal dysfunction* FDG-PET (g/ml) 1.27 0.13 34% −0.02

Amyloid beta burden* Amyloid beta CSF (pg/ml) 1053 455 45% −19.9

Daily functioning* Functional activities questionnaire (0-30) 1.84 3.45 0.7% 1.06

Morbidity burden Combinedmorbidity score (0-1) 0.32 0.17 24% 0.02

Depressive symptoms Geriatric depression scale (0-15) 1.30 1.38 0.1% 0.17

Obesity Bodymass index (kg/m2) 27.2 4.95 0.8% −0.14

Blood pressure Pulse pressure (mmHg) 59.4 14.7 0.5% −0.30

Tau burden Phosphorylated tau CSF (pg/ml) 25.5 13.1 45% 0.41

Cerebral endothelial dysfunction Whitematter hyperintensity volume (cm3) 5.67 8.85 35% 0.33

Constants

Diabetes Diabetes (yes/no) 0.15 0.35 24%

Dyslipidemia Dyslipidemia (yes/no) 0.73 0.44 24%

Social relationships Currently married (yes/no) 0.75 0.43 0.4%

Hearing loss Hearing impairment (yes/no) 0.10 0.30 0%

Smoking History of smoking (yes/no) 0.40 0.49 24%

Excessive alcohol use History of alcohol abuse (yes/no) 0.04 0.19 24%

Head trauma Traumatic brain injury (yes/no) 0.05 0.22 24%

ApoE-4 carriership ApoE-4 alleles (0-2) 0.49 0.63 1.9%

Education level Received education (years) 16.2 2.67 0%

Motor function* Motor strength impairment (yes/no) 0.03 0.17 0%

For stocks, the average slopes per year over all the individuals over the first 5 years in the data are also shown.

Abbreviations: CSF, cerebrospinal fluid; CBF, cerebral blood flow.

* These nodes have the opposite interpretation in the CLD as in the data (e.g., ADAS-cog-13measures cognitive dysfunction, hence its slope is positive rather

than negative).

**These nodes are imputed into ADNI from the HELIAD data; the reported characteristics are from the imputed data. The corresponding characteristics in

the HELIAD (N= 1924) data are provided in section 3.1.1.
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8 ULEMAN ET AL.

complexity in terms of model parameters (many of which represent

time-dependent relationships) and feedback loops, and that nonlinear

behavior can already arise from coupled first-order linear differential

equations, wemade the common assumption of local linear approxima-

tion. This assumption implies that the causal links are considered linear

(i.e., additive) and first-order (i.e., only the first derivatives are used)

in the relatively short simulation time we used (5 years) compared to

the overall time frame of preclinical AD progression of several decades

during which the individual links may become nonlinear. We verified

this assumption in section 3.3. Section 3.4 provides the resultingmodel

equations with the estimatedmodel parameters.

2.4 Parameter estimation

For estimation and validation purposes, we applied five-fold cross-

validation and split the data five times so that each individual was both

used to estimate the model parameters and assess the (out-of-sample)

predictive accuracy of the SDM. After fitting a model without incorpo-

rating prior knowledge into theparameter estimates,weobservedvery

high correlations between the parameters aswell as unexpected polar-

ities of parameter estimates with large uncertainties around them,

suggesting that the parameters were underdetermined and could not

be identified well from the data. This may be a consequence of the

convoluted nature of the CLD, as reported by the group model build-

ing experts.4 One way to mitigate this is by adding additional model

assumptions,21 so we next applied Bayesian inference to incorporate

prior knowledge regarding the sign (+ or -) of the parameter estimates

(which was already encoded in the links’ polarities in the CLD). To this

end, we used Markov Chain Monte Carlo methods to obtain a poste-

rior probability distribution over the parameters of each training data

fold based on both the data and prior knowledge. Section 3.5 provides

further details on the parameter estimation.

2.5 Model validation

We first conducted the behavior pattern test20,40 to assess the (out-

of-sample) predictive accuracy, i.e., generalizability, of the SDM. Since

we conducted five-fold cross-validation, we simulated the individuals

in each test set (20% of all individuals per fold) and compared the root

mean squared errors (RMSEs) of the MAP (model with prior) and the

model without prior to the RMSE of a reference model. This reference

model assumed that all individuals increased with the same average

slope from baseline for each stock. Finally, we compared the RMSEs in

the test sets of each fold to the RMSE of the training sets, which sug-

gested that the model did not over- or underfit the training data folds

(section 3.7).

We then conducted the structure-oriented behavior test20,40 to

assess the plausibility of the simulated interventions in 1000 sam-

ples from the combined posterior over all data folds. We simulated

the effect of interventions using a one-at-a-time sensitivity analysis in

which we alternatively added (protective factors) or subtracted (risk

factors) one standard deviation to the baseline values (stocks and con-

stants) of 15 modifiable factors. In the case of an auxiliary risk factor,

we added or subtracted a standard deviation as a constant to its equa-

tion.We then determined effect sizes for the risk factors by comparing

the difference in cognitive functioning after a simulated trajectory

of 5 years with and without an intervention. Finally, we ranked the

risk factors by their effect sizes and compared this ranking to two

sets of validation statements derived from previously published meta-

analyses. For one set, based on observational data, we extracted 44

validation statements regarding 11 of the modifiable risk factors from

the RR ratios reported by Livingston et al.12 For the other set, based

on RCTs, we extracted nine validation statements regarding four of

the modifiable risk factors from the standardized mean differences

and trial durations reported by the World Health Organization.29

Section 3.7 provides further details on themodel validation.

3 DETAILED STUDY DESIGN AND RESULTS

3.1 Data selection

3.1.1 Data selection and preprocessing

ADNIwas launched in 2003 as a public-private partnership led by Prin-

cipal Investigator Michael W. Weiner, MD, aiming at AD detection at

the earliest possible stage and supporting advances in AD prevention.

Participants in ADNI were recruited at 57 memory clinic sites in the

United States and Canada, with age ranges from 55 to 90 years and

follow-up visits occurring every 6 months. The relevant ADNI data

files were obtained from loni.adni.com, contained 2127 individuals,

and were extracted and merged on subject ID and visitation code. We

removed duplicate records (i.e., multiple measurements for the same

subject ID and visitation code) and estimated relevant features (such

as morbidity count, body mass index [BMI], and pulse pressure) from

related variables. Either screening or baseline values were used as ini-

tial values, depending on their availability. If both were available for an

individual, the baseline values were used. Given our specific interest in

prevention, we excluded subjects who already had dementia at base-

line from the data (N = 365). No other exclusion criteria were applied

to remain representative of the highly heterogeneous population who

could potentially develop late-onset (non-familial) AD, leaving 1762

individuals in the data.

Most features we selected (Table 1) were directly available in

the ADNI data (such as ADAS-cog-13), but some features had to

be extracted from the patients’ medical histories. In particular, the

combined morbidity score was calculated as the fraction of mor-

bidities in the following categories: Psychiatric, Neurologic (other

than AD), Cardiovascular, Respiratory, Hepatic, Endocrine-Metabolic,

Gastrointestinal, Hematopoietic-Lymphatic, Renal-Genitourinary,

and Malignancy. Diabetes was extracted by searching in the medical

history (at baseline or month 6) for search terms: “diabetes”, “diabetic”,

“insulin”, and “DM”, or having fasting glucose > 125 mg/dl at baseline.

Dyslipidemia was similarly extracted using search terms:
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ULEMAN ET AL. 9

“dyslipidemia”, “hyperlipidemia”, “hypercholesterolemia”, “triglyc-

erides”, “cholesterol” and “lipids”, or having a total cholesterol

of > 200 mg/dl at baseline. Finally, head trauma was extracted by

searching in medical history at baseline using search terms: “head

injury”, “TBI”, “head trauma”, “concussion”, “fractured skull”, and “skull

fracture”.

The number of individuals available for estimating themodel param-

eters differed per procedure. The baselinemeans, standard deviations,

and missing rates of the ADNI features are provided in Table 1. For the

ADNI auxiliaries, the baseline data of plasma cortisol (N= 434), plasma

TNF-alpha (N = 220), hippocampal cerebral blood flow (N = 125),

plasma superoxide dismutase (N= 223), cerebrospinal fluid TNF-alpha

(N = 165), and default-mode network connectivity (N = 107) of indi-

viduals were used. For the estimation of the stock parameters, we

omitted individuals that did not have data available for all stocks and

constants at baseline because a complete set of baseline values of

the ADNI data was necessary to initialize the SDM simulations. This

resulted in N = 600 individuals for the estimation of the stock param-

eters, for a total of 25051 data points over all individuals, stocks and

time-points. These data (N = 600) were divided into 80% training

data (N = 480) and 20% test data (N = 120) five times using five-fold

cross-validation. We did not require that each of these N = 600 indi-

viduals had longitudinal data points available for all stocks. For the

specific stocks, 98% (ADAS-cog-13), 99% (hippocampal volume), 51%

(fluorodeoxyglucose-positron emission tomography [FDG-PET]), 99%

(whitematter hyperintensity [WMH]volume), 50% (amyloidbeta), 98%

(functional activities questionnaire), 17% (morbidity score), 98% (geri-

atric depression scale [GDS]), 100% (BMI), 100% (pulse pressure), and

50% (phosphorylated tau) of individuals had one or more longitudinal

data points available. The average slopes of these stocks are provided

in Table 1.

HELIAD is a population-based,multidisciplinary, collaborative study

designed to estimate the prevalence and incidence of MCI and AD as

well as other types of dementia and neuropsychiatric conditions of

aging in theGreekpopulation of 65 andolder. InHELIAD, demographic,

clinical and lifestyle factors were obtained at baseline and in the 3-

year follow-up to examine the relationship between lifestyle factors

andneuropsychiatric disease in older individuals. TheHELIADdata set,

which contained 2083 individuals, was selected from the GAAIN plat-

form because it contains data on each of the lifestyle factors that were

missing in theADNI data.We also excluded subjects fromHELIADwho

had dementia at baseline (N= 158), leaving 1924 individuals.

For nodes that ADNI lacked data for, we selected from HELIAD

the Sleep Scale from the Medical Outcomes Study (MOS-SS) for

sleep quality, a score for physical activity, a score based on maga-

zine/newspaper reading and museum visits for engagement in cog-

nitively demanding tasks, and a Mediterranean diet score derived

from a food frequency questionnaire for healthy dietary patterns. For

these HELIAD variables, which were all auxiliaries, cognitive activity

(N= 803; mean= 3.03, sd= 2.51), Mediterranean diet score (N= 849;

mean= 33.4, sd= 4.53), physical activity score (N= 492; mean= 6.89,

sd = 2.01), and the sleep scale (N = 867; mean = 17.7, sd = 7.68) were

used for the parameter estimation. Since FDG-PET (neuronal dysfunc-

tion) andmotor functionwere not available in HELIAD, the causal links

(from the CLD) from neuronal dysfunction to sleep quality (replacing

the effect of circadian misalignment in the CLD) and motor function to

physical activity were omitted as predictor terms in the estimation of

sleep quality and physical activity.

ADAS-cog-13 was unavailable as a predictor for physical and

cognitive activity in the HELIAD data. Therefore, both were

regressed using an ADAS-cog-13 score based on the Mini-Mental

State Examination (MMSE) score (Pearson’s r: -0.74) estimated

from the ADNI data, resulting in the following conversion formula:

ADAS= 90.1−2.7×MMSE.

3.1.2 Data sets comparison

Generally, a trade-off exists between using more data sets (i.e., having

greater coverageof theCLDnodes) and the compatibility of the param-

eters estimated from these data sets. Given this trade-off, we decided

to use two data sets: ADNI and HELIAD. To support this decision, we

compared the distributions of the predictors we used from both data

sets (Figure 6) and the two confounding factors we adjusted for: age

and gender. As can be seen, social relationships (marital status), cog-

nitive functioning (MMSE), obesity (BMI), and depressive symptoms

(GDS) were quite similar between the two data sets. The estimation of

all auxiliarieswasadjusted for ageandgender. The feature thatdiffered

most between the two data sets, namely education level (years of fol-

lowed education), was also adjusted in the estimation of the auxiliaries,

except for sleep quality, as it was not included as a direct cause in the

CLD.

3.1.3 Sensitivity tests

To assess the impact of adding the HELIAD data, we conducted a sen-

sitivity test in which we only used ADNI data to estimate the model

(in which case sleep quality, healthy dietary patterns, physical activ-

ity, and engagement in cognitively demanding tasks were omitted from

the model). This resulted in a very similar ranking of simulated inter-

vention effects with depressive symptoms, head trauma, and hearing

loss being the top three ranked risk factors, respectively. In addition,we

conducted a sensitivity test in which we included only individuals who

were cognitively normal (i.e., by excluding persons with mild cognitive

impairment from the data). This likewise resulted in a very similar rank-

ingwith sleep quality, depressive symptoms, and hearing loss as the top

three ranked risk factors, respectively.

3.1.4 Feature selection

Based on their availability in the data sets, we selected features to

operationalize the CLD nodes as closely in line as possible with the

node definitions provided by the group model building experts dur-

ing group model building.4 In most cases, straightforward features

were available, such as the number of years of received education
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10 ULEMAN ET AL.

F IGURE 6 Histograms of features from the
HELIAD and ADNI data sets. Education level is
measured in years of received education,
obesity is measured by the bodymass index,
social relationships is measured asmarital
status (1: currently married), cognitive
functioning is measured by theMini-Mental
State Examination (in HELIAD), depressive
symptoms is measuredwith the Geriatric
Depression Scale, and age is measured in years

to operationalize education level. In other cases, only a proxy was

available, such as marital status for social relationships. However,

many different plasma and cerebrospinal fluid markers were available

for systemic- and neuroinflammation. Combining these into a single

measure using principal component analysis added no improvement

in the model’s accuracy compared to using single markers. Hence,

we selected TNF-alpha as a single representative marker because

it crosses the blood-brain barrier, both macrophages and microglia

secrete it, and its inhibition may have therapeutic benefits.51 As

the primary variable of interest, we selected for cognitive function-

ing the cognitive subscale of the ADAS-cog-13 over alternatives like

the MMSE or ADAS-cog-11 due to its greater responsiveness to AD

progression, including potentially in subjects with predementia.52

3.2 Node labeling

3.2.1 Node labeling details

System dynamics was selected as an appropriate starting point for

developing a computational model because it can already capture the

CLD’s complexity by describing the dynamics of various interrelated

quantities over time in a single model. As a first approximation, it

abstracts CLD nodes to three variable types (stocks, auxiliaries, con-

stants) based on their assumed time scales. SDMs can also be used to

identify which parts of the system require further elaboration, after

which they can be flexibly coupled tomore sophisticated types ofmod-

els if needed,20 for example, an agent-basedmodel for simulating group

interventions or a partial differential equation model for simulating

spatially heterogeneous patterns of brain atrophy. Starting with more

detailed models like these could introduce greater complexity at the

level of individual nodes while potentially coming at the cost of not

implementing the system ofmulticausality as a whole.

To label the nodes into stocks, auxiliaries, and constants, we fol-

lowed the novel approach by Crielaard et al.20 that utilizes assumed

time scales of the CLD nodes (Figure 7). For example, obesity (BMI) is

a stock as it would not drastically change from 1week to another, even

if its direct causes would. For the auxiliaries, we assumed that inside-

body processes generally changed rapidly (e.g., inflammation, oxidative

stress, and brain perfusion). A few exceptions were made to this rule

based on the expert-solicited CLD definitions of the nodes. Specifi-

cally, we implemented as stocks: blood pressure, defined as “long term”

in CLD,4 amyloid beta and tau burden, defined by a gradual process

of deposition,53 neuronal dysfunction, involving neuronal damage and

death, which is unlikely to occur on a short time scale, and cerebral

endothelial dysfunction, operationalized asWMHvolume, which accu-

mulates over longer periods of time.However, physical activity, healthy

dietary patterns, sleep quality, and engagement in cognitively demand-

ing tasks were assumed to be auxiliaries as we consider them as states

(rather than traits) that, relative to the scale of months, can change

rapidly as a function of their inputs. For instance,more physical activity

might take several weeks or months to alleviate depressive symptoms
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ULEMAN ET AL. 11

F IGURE 7 Scale-separationmapwith the assumed time scales of the nodes on the x-axis. Based on the assumed time scales (x-axis) relative to
the assumed time scale of cognitive functioning (3months), the nodes are divided into auxiliaries (< 1 to 2weeks, corresponding to 0.3months),
stocks (within one order of magnitude of 3months: 0.3 to 30months), and constants (> 2.5 years, corresponding to 30months)

(a stock), for example, by increasing brain-derived neurotrophic factor

levels and modulating serotonergic neurotransmission,15 whereas a

decrease in depressive symptomsmight improve a person’s motivation

for physical activity (an auxiliary) almost immediately. As constants,

we selected the (“exogenous”) nodes that do not have incoming links

in the CLD, namely apoE-4 carriership, head trauma, and education

level, as they have no way of changing their value in our model. Addi-

tionally, we checked how much the nodes changed over time. Several

of them were operationalized with binary variables that changed in

less than 8% of individuals over the utilized simulation time and were

therefore assumed constant, in particular: smoking (< 8%), excessive

alcohol use (< 1%), motor function (< 8%), diabetes (< 3%), dyslipi-

demia (< 2%), social relationships (< 1%), and hearing loss (< 8%).

Except for diabetes and dyslipidemia (section 3.1), each of these con-

stants was set to their baseline values because social relationships and

excessive alcohol use changed in less than 1% of individuals, and smok-

ing, motor function and hearing loss were almost completely missing

over time (except for 6% to 8% of the individuals which were avail-

able but only after 4 years. For smoking, data were available after

1 year as well but at this point only 0.4% of people had changed

their status).

3.2.2 Sensitivity tests

We conducted three sensitivity tests to assess the impact of assump-

tions made in the labeling process. First, we conducted a sensitivity

test in which we replaced diabetes and dyslipidemia (as constants)

with fasting glucose and total cholesterol (as auxiliaries). Second, we

conducted a sensitivity test in which we implemented depressive

symptoms, obesity, and blood pressure as constants rather than stocks.

Third,weconducteda sensitivity test inwhichwe implementeddepres-

sive symptoms, tau burden, and blood pressure as auxiliaries rather

than stocks. Each of these tests resulted in a very similar ranking, with

sleep and depressive symptoms being the top two risk factors, hearing

loss and head trauma being among the top five risk factors, together

with either healthy dietary patterns or smoking. In addition, in each

test, blood pressure, obesity, engagement in cognitively demanding

tasks, diabetes, and dyslipidemia were among the lowest ranked risk

factors.

3.2.3 Replacing nodes that could not be
operationalized

Not all nodes from the CLD were included in the SDM because

they were insufficiently available in the utilized ADNI study data.

These were wealth, microbleeds, lacunar infarcts, glymphatic system

function, circadian misalignment, and damage to neurotransmitter

systems. Fortunately, all these nodes, except for one, have either only

a single incoming link from another node (single-in) or only one outgo-

ing link to another node (single-out) or both (single-in single-out). In all

these cases, the node can be effectively replaced by a direct link from

the incoming to the outgoing node in a linear model.54 The exception

was glymphatic system function, which has two incoming (sleep quality

and head trauma) and outgoing (amyloid beta and tau burden) links in
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12 ULEMAN ET AL.

F IGURE 8 Scatter plot of the strongest causal link in the SDM
that goes from tau burden (phosphorylated tau in the cerebrospinal
fluid) to neuronal dysfunction (FDG-PET) with locally weighted
scatterplot smoothing to identify trends in the data.

the CLD. However, since we operationalized head trauma as a binary

constant that is only present in 5% of the simulated population, we

reasoned that, for at least 95% of the individuals, the dynamics would

be exclusively driven by sleep quality. Hence, glymphatic system func-

tion was replaced by direct links from sleep quality and head trauma to

amyloid beta and tau burden. Although ADNI data were available for

WMHs (a double-in, single-out node in theCLD), we used it as amarker

tooperationalize cerebral endothelial dysfunction.55 This is reasonable

since WMHs is a single-out node, and cerebral endothelial dysfunc-

tion is one of the two nodes with a causal link to WMHs, shares the

same incoming links (brain perfusion) and has the same outgoing link

(neuronal dysfunction) in the CLD.

3.3 Validation of the local linear approximation
assumption

We checked the validity of the local linear approximation assump-

tion (i.e., that first-order linear differential equations can describe the

causal links within the simulation time of 5 years) by log-transforming

the stocks and predicting them with linear mixed models using either

just Time, or Time+ Time × Time. The rationale is that since a coupled

system of first-order linear differential equations can fit an exponen-

tial function, a log-transformed stock should be predicted well by just

a linear term if linearity is a reasonable assumption.We found that, for

only 4 out of 11 log-transformed stocks, the Akaike information crite-

rion (AIC) was more than 2 points lower, that is, better, when adding a

squared time predictor (less than 2 AIC points difference is not con-

sidered meaningful56). Furthermore, corresponding scatter plots for

the causal links (example provided Figure 8) indicate a relatively low

signal-to-noise ratio in the data, suggesting that linear functions are a

reasonable approximation and that more, or higher quality, data are

likely needed to discern nonlinear effects. Hence, in the absence of

clearly discernible nonlinear functional forms in the data, or domain

knowledge regarding the causal links’ functional forms, describing the

causal link with a just a single (linear) term is the most parsimonious

option.

We also generated our results with a simulation time of two years

(at which point only one log-transformed stock was 2 AIC points lower

when adding the squared time predictor, namely morbidity count).

This resulted in a similar ranking of simulated intervention effects,

with sleep quality, depressive symptoms and hearing loss being the

top-ranked risk factors, respectively, and dyslipidemia, blood pressure,

diabetes, obesity, and being the lowest-ranked risk factors.

The simulation time was also limited because the ADNI data may

contain selective attrition.57 Even at the 5-year point, only 54%

of individuals were still in the study. However, at 2 years 92% of

individuals were still in the study and, as stated, the simulated inter-

ventions in the SDM with a simulation time of 2 years resulted in

a similar ranking of simulated intervention effects that would have

resulted in the same conclusions made in this paper. This suggests

that the effect of attrition bias is limited within the simulation time of

5 years.

3.4 Model equations and estimated parameters

3.4.1 System dynamics equations

Below, we present an example of an algebraic equation (equation 1;

sleep quality, measured by the sleep scale from theMedical Outcomes

Study [MOS]) and a differential equation (equation 2; depressive symp-

toms, measured by GDS). The coupled system of equations of all such

auxiliaries and stocks constitute the SDM. Stocks and auxiliaries may

change over time and therefore have “(t)” next to them to indicate

a specific point in time, whereas constants do not. We implemented

these equations in Python 3.8 and solved them numerically using the

adaptive step size Runge-Kutta method58 with absolute and relative

local error tolerances of 1.4 × 10−8 and 1000 maximum steps for each

time-point.

MOS (t) = −𝜃ms,gdsGDS (t) + 𝜃ms,paPhysical activity (t)

+𝜃ms,cmCurrently married + 𝜃ms,ageAge (t)

+𝜃ms,mgGender

(1)

dGDS(t)

dt
= −𝜃gds,msMOS (t) + 𝜃gds,acADAS (t)

+𝜃gds,cpCortisol plasma (t) − 𝜃gds,paPhysical activity (t)

−𝜃gds,cmCurrently married + 𝜃gds,ageAge (t)

(2)

As seen in these equations, we corrected each auxiliary equation for

gender (a constant) and age to adjust for possible confounding effects.

Additionally, we adjusted all stock equations for age but not gender

after confirming that all stocks, except for BMI, are better predicted in

a linear mixed model with an Age × Time interaction but no Gender ×

Time interaction (as assessed by the AIC).
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ULEMAN ET AL. 13

3.4.2 Model parameters

In the above equations, θi,j represents the parameter that describes the

relationship between the feature on the left-hand side of the equa-

tion (i) and the feature that it multiplies (j, immediately to its right).

Table 2 reports theMAPof each estimatedmodel parameter (averaged

over the five training data folds) that corresponds to the strength of

the causal link between the origin (incoming) to destination (outgoing)

variable. It also reports the 95% highest density interval (HDI), that is,

the posterior’s narrowest credibility interval that contains 95% of the

probability density. In other words: a given parameter lies in this range

with 95% probability.

3.5 Parameter estimation

Due to the substantialmissingness in theADNIdata,weestimated aux-

iliary parameters independently from and prior to estimating the stock

parameters. The number of people available to estimate the param-

eters in the auxiliary equations varied per auxiliary and per data set

(see section 3.1) and per data fold (i.e., if an individual was part of the

test set fold, it was omitted from the estimation of that fold). After

estimating each of the auxiliaries independently, we expressed them

in terms of only stocks and constants. That is, we transformed the

auxiliaries’ equations such that other auxiliaries appearing in these

equations were replaced by their right-hand sides until no auxiliaries

remained. Consequently, the stocks could be exclusively expressed

in terms of other stocks and constants, making the equations used

for the estimation of the stocks order-independent. This allowed

for the vectorization of the equations, which substantially improved

computational efficiency.’’

3.5.1 Model without prior

Theparameterswere independently estimated for each auxiliary equa-

tion by ordinary least squares regression on the baseline data (as

longitudinal data points were unavailable for many auxiliaries). The

auxiliary parameters were then fixed to their mean point estimates in

the SDM equations, after which the remaining 88 parameters of the

stocks were simultaneously estimated. To estimate the stock parame-

ters, we utilized the available longitudinal data of all individuals in the

training set of each data fold. We first used the Levenberg-Marquardt

algorithm to obtain the set of parameters corresponding to the lowest

sum of squared residuals for each training data fold. After observing

parameter identifiability issues and implausible simulated interven-

tion effects, we resorted to Bayesian methods to incorporate prior

knowledge regarding the parameter’s polarities from the CLD.

3.5.2 Model with prior

Bayesian parameter estimation is an approach to statistical inference

that uses available background knowledge about model parameters in

the form of a prior distribution, which is updated using the available

data in the form of a likelihood function to obtain a so-called posterior

distribution using Bayes’ theorem.59

We formulated prior distributions for all uncertain parameters by

(1) soliciting prior expert knowledge on the link polarities in the CLD

and (2) further improvingparameter identifiability through the regular-

izing property of normal priors.59 For parameters based on CLD links,

we selected a half-normal prior centered around 0 with standard devi-

ation σ = 0.5, which has zero probability for parameter values with a

sign other than the CLD’s link polarities. For non-CLD parameters, that

is, intercepts and parameters involving age and gender, we selected a

normal prior with standard deviation σ= 0.5. This means that approxi-

mately 95% of the probability density of the standardized coefficients

falls within the interval of [-1, 1] (normal prior) and [0, 1] (half-normal

prior). We consider this a valid assumption because the largest abso-

lute parameter in the model without prior was 0.54, and most other

parameters were much smaller than that. For the prior of the standard

deviation of the normal likelihood, we also utilized a half-normal distri-

bution after checking that the residuals were generally symmetrically

centered around themean and had homogeneous variance over time.

To estimate the model parameters, we first used the No-U-Turn

sampler60 with 1000 samples and 2000 burn-in samples for each auxil-

iary.Next,we checked the results for convergenceusing theRˆ statistic.
Then, we fixed the auxiliary parameters to their mean posterior values

andused theAffine InvariantMCMCensemble sampler to estimate the

stock parameters.61,62 As recommended for practical purposes in this

high dimensional problem, we first identified a high probability point

using the Trust Region Reflective method, which allows for bounded

optimization to find the maximum likelihood point in the parameter

space bounded to the sign of the CLD links. As this procedure can get

stuck in local minima, we repeated the procedure 10 times with dif-

ferent random initial values. We then initialized the sampler uniformly

around the set of parameter values with the lowest sum of squared

residuals. Likewise, the standard deviations of the parameters for the

likelihood functions were initialized around the root mean squared

residual for each stock. Also, as recommended, we used many walkers:

10 times the number of parameters for a total of 880. We collected

300 samples for all walkers, for a total of 4400 posterior samples per

data fold after thinning anddiscarding the first 200 samples perwalker.

We then checked the acceptance fractions of the walkers, which were

0.2 on average, which is within the recommended range.62 We also

inspected the trace plots to check for convergence of the walkers.

3.6 Model behavior

3.6.1 Simulated trajectories

The simulated trajectories of all stocks for a randomly selected indi-

vidual are shown in Figure 9 for 1000 posterior predictive samples.

As can be seen, the posterior trajectories followed the general trend

(positive/negative) of the data points for many of the stocks for this

individual. However, some simulated trajectories also diverged from
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14 ULEMAN ET AL.

TABLE 2 Themagnitude and uncertainty of the SDMparameters

Origin Polarity Destination MAP 95%HDI

Auxiliary parameters

ADAS-cog-13 − Cognitive activities score 0.077 [0.0, 0.14]

Currently married + Cognitive activities score 0.08 [0.013, 0.143]

Received education + Cognitive activities score 0.252 [0.184, 0.324]

Geriatric depression scale − Mediterranean diet score 0.066 [0.006, 0.12]

Currently married + Mediterranean diet score 0.057 [0.002, 0.11]

Received education + Mediterranean diet score 0.179 [0.116, 0.244]

ADAS-cog-13 − Physical activity score 0.038 [0.0, 0.094]

Geriatric depression scale − Physical activity score 0.116 [0.028, 0.201]

Bodymass index − Physical activity score 0.126 [0.045, 0.214]

Currently married + Physical activity score 0.045 [0.0, 0.104]

Received education + Physical activity score 0.023 [0.0, 0.063]

Physical activity score − MOS-SS 0.036 [0.0, 0.079]

Geriatric depression scale + MOS-SS 0.297 [0.234, 0.363]

Currently married − MOS-SS 0.036 [0.0, 0.081]

MOS-SS + Cortisol plasma 0.042 [0.0, 0.114]

Geriatric depression scale + Cortisol plasma 0.027 [0.0, 0.072]

Currently married − Cortisol plasma 0.03 [0.0, 0.081]

Received education − Cortisol plasma 0.049 [0.0, 0.113]

Mediterranean diet score − TNF-alpha plasma 0.082 [0.0, 0.201]

Physical activity score − TNF-alpha plasma 0.082 [0.0, 0.192]

Cortisol plasma + TNF-alpha plasma 0.036 [0.0, 0.093]

FDG-PET − TNF-alpha plasma 0.027 [0.0, 0.072]

Morbidity score + TNF-alpha plasma 0.115 [0.001, 0.22]

Bodymass index + TNF-alpha plasma 0.07 [0.0, 0.171]

Diabetes + TNF-alpha plasma 0.035 [0.0, 0.095]

Physical activity score + Hippocampal CBF 0.054 [0.0, 0.153]

WMHvolume − Hippocampal CBF 0.123 [0.0, 0.264]

Mediterranean diet score + Superoxide dismutase plasma 0.175 [0.004, 0.333]

Cortisol plasma − Superoxide dismutase plasma 0.125 [0.005, 0.233]

FDG-PET + Superoxide dismutase plasma 0.064 [0.0, 0.147]

Smoking − Superoxide dismutase plasma 0.07 [0.0, 0.155]

Alcohol abuse − Superoxide dismutase plasma 0.085 [0.0, 0.183]

Mediterranean diet score − TNF-alpha CSF 0.136 [0.0, 0.288]

TNF-alpha plasma + TNF-alpha CSF 0.064 [0.0, 0.149]

Superoxide dismutase plasma − TNF-alpha CSF 0.093 [0.0, 0.194]

A-beta CSF − TNF-alpha CSF 0.043 [0.0, 0.112]

Traumatic brain injury + TNF-alpha CSF 0.101 [0.001, 0.209]

Cognitive activities score − DMN connectivity a-p ratio 0.093 [0.0, 0.233]

Physical activity score − DMN connectivity a-p ratio 0.054 [0.0, 0.151]

MOS-SS + DMN connectivity a-p ratio 0.073 [0.0, 0.2]

FDG-PET − DMN connectivity a-p ratio 0.073 [0.0, 0.187]

(Continues)
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ULEMAN ET AL. 15

TABLE 2 (Continued)

Origin Polarity Destination MAP 95%HDI

Stock parameters

MOS-SS + ADAS-cog-13 0.202 [0.055, 0.437]

Hippocampal CBF − ADAS-cog-13 0.151 [0.067, 0.225]

DMN connectivity a-p ratio + ADAS-cog-13 0.133 [0.064, 0.226]

Hippocampal volume − ADAS-cog-13 0.289 [0.13, 0.39]

FDG-PET − ADAS-cog-13 0.619 [0.431, 0.723]

Geriatric depression scale + ADAS-cog-13 0.121 [0.055, 0.194]

Hearing impairment + ADAS-cog-13 0.11 [0.052, 0.183]

FDG-PET + Hippocampal volume 0.154 [0.118, 0.222]

Mediterranean diet score + FDG-PET 0.243 [0.059, 0.542]

Hippocampal CBF + FDG-PET 0.12 [0.037, 0.209]

Superoxide dismutase plasma + FDG-PET 0.127 [0.065, 0.221]

TNF-alpha CSF − FDG-PET 0.172 [0.09, 0.241]

WMHvolume − FDG-PET 0.186 [0.06, 0.273]

A-beta CSF + FDG-PET 0.351 [0.173, 0.578]

Phosphorylated tau CSF − FDG-PET 1.059 [0.908, 1.311]

Smoking − FDG-PET 0.162 [0.062, 0.24]

Alcohol abuse − FDG-PET 0.134 [0.042, 0.207]

Traumatic brain injury − FDG-PET 0.133 [0.057, 0.229]

Mediterranean diet score − WMHvolume 0.163 [0.048, 0.307]

TNF-alpha plasma + WMHvolume 0.13 [0.042, 0.212]

Hippocampal CBF − WMHvolume 0.293 [0.114, 0.517]

Superoxide dismutase plasma − WMHvolume 0.094 [0.032, 0.191]

A-beta CSF − WMHvolume 0.047 [0.023, 0.123]

Pulse pressure + WMHvolume 0.057 [0.039, 0.145]

Diabetes + WMHvolume 0.049 [0.019, 0.122]

Dyslipidemia + WMHvolume 0.049 [0.018, 0.133]

Smoking + WMHvolume 0.055 [0.024, 0.124]

Traumatic brain injury + WMHvolume 0.037 [0.008, 0.114]

ApoE-4 alleles + WMHvolume 0.049 [0.008, 0.119]

MOS-SS − A-beta CSF 0.103 [0.027, 0.208]

TNF-alpha CSF − A-beta CSF 0.157 [0.074, 0.228]

WMHvolume − A-beta CSF 0.132 [0.053, 0.193]

Diabetes − A-beta CSF 0.08 [0.029, 0.184]

Traumatic brain injury − A-beta CSF 0.083 [0.03, 0.193]

ApoE-4 alleles − A-beta CSF 0.125 [0.061, 0.209]

ADAS-cog-13 + Functional activities questionnaire 0.839 [0.643, 0.992]

FDG-PET − Functional activities questionnaire 0.624 [0.457, 0.767]

Morbidity score + Functional activities questionnaire 0.115 [0.047, 0.195]

Motor strength impairment + Functional activities questionnaire 0.123 [0.054, 0.217]

Mediterranean diet score − Morbidity score 0.331 [0.068, 0.712]

Physical activity score − Morbidity score 0.29 [0.038, 0.735]

MOS-SS + Morbidity score 0.132 [0.063, 0.235]

TNF-alpha plasma + Morbidity score 0.137 [0.049, 0.211]

Bodymass index + Morbidity score 0.161 [0.082, 0.268]

(Continues)
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16 ULEMAN ET AL.

TABLE 2 (Continued)

Origin Polarity Destination MAP 95%HDI

Diabetes + Morbidity score 0.223 [0.027, 0.569]

Dyslipidemia + Morbidity score 0.231 [0.077, 0.385]

Currently married − Morbidity score 0.172 [0.054, 0.388]

Alcohol abuse + Morbidity score 0.104 [0.046, 0.227]

Physical activity score − Geriatric depression scale 0.137 [0.066, 0.232]

MOS-SS + Geriatric depression scale 0.116 [0.064, 0.214]

Cortisol plasma + Geriatric depression scale 0.116 [0.074, 0.22]

ADAS-cog-13 + Geriatric depression scale 0.149 [0.043, 0.284]

Currently married − Geriatric depression scale 0.139 [0.066, 0.229]

Mediterranean diet score − Bodymass index 0.101 [0.031, 0.174]

Physical activity score − Bodymass index 0.124 [0.044, 0.195]

Mediterranean diet score − Pulse pressure 0.158 [0.06, 0.226]

Physical activity score − Pulse pressure 0.198 [0.055, 0.356]

Cortisol plasma + Pulse pressure 0.169 [0.053, 0.441]

Bodymass index + Pulse pressure 0.13 [0.063, 0.247]

Currently married − Pulse pressure 0.108 [0.038, 0.192]

MOS-SS + Phosphorylated tau CSF 0.173 [0.063, 0.281]

Superoxide dismutase plasma − Phosphorylated tau CSF 0.187 [0.073, 0.267]

TNF-alpha CSF + Phosphorylated tau CSF 0.202 [0.068, 0.24]

A-beta CSF − Phosphorylated tau CSF 0.117 [0.06, 0.198]

Traumatic brain injury + Phosphorylated tau CSF 0.104 [0.056, 0.193]

ApoE-4 alleles + Phosphorylated tau CSF 0.079 [0.012, 0.167]

The polarity is the sign of a given causal link from the causal loop diagram.4 The parameters are constrained to [0, ∞] by the half-normal prior distribution,

which is added or subtracted in the corresponding equation based on the causal link’s polarity. For example, the causal link from BMI to pulse pressure has a

positive polarity, so its effect is 0.002, whereas the causal link fromMediterranean diet score to pulse pressure has negative polarity, so its effect is -0.002. To

adjust for the potentially confounding effects of age and gender, they were also estimated as part of themodel (estimates not shown).

Abbreviations: MAP, maximum a posteriori estimate of the parameters; HDI, Highest density interval; DMN connectivity a-p ratio, default mode network

connectivity anterior-posterior ratio; CBF, cerebral blood flow; CSF, cerebrospinal fluid.

the data whenever an individual was too dissimilar from the popula-

tion. For instance, blood pressure, operationalized as pulse pressure

(mmHg), decreased only slightly in the simulation (similar to the aver-

age population slope, which was only -0.3 per year, Table 1) while

the data points for this individual decreased much more (Figure 9).

Likewise, FDG-PET and WMH volume increased and decreased in the

data of this individual (Figure 9), respectively, while on average these

actually decrease and increased over time in the population (Table 1).

As shown in Figure 10, when using the MAP parameter values, the

stocks’ trajectories were similar for all the individuals. As such, we con-

clude that the SDM predicts similar trends for all individuals and may

therefore not fit individual deviations from this trendwell.

3.7 Model validation

3.7.1 Validation tests

In computational modeling, model validation implies confirming that

the model achieves its key objectives. This is commonly done by

assessing its structure (structural validation) and behavior (behav-

ioral validation). Hereby it is important to use information that was

not already used in the development or estimation of the model.20,40

In terms of structural validation, the structure of the CLD was crit-

ically studied by an interdisciplinary group of neuroscience domain

experts and reviewed through a review of scientific literature.4 Here,

we describe two tests for behavioral validation: a behavior pat-

tern test that compared the model simulations to unseen test data

and a structure-oriented behavior test that compares the simulated

interventions to two sets of validation statements. Given that

the SDM’s key objective involves simulating interventional what-if

scenarios,20 the structure-oriented behavior test has precedence.

3.7.2 Behavior pattern test

We assessed the generalizability of the SDM by applying five-fold

cross-validation, which provided us with five different training-test set

combinations. We estimated three measures of predictive accuracy in
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ULEMAN ET AL. 17

F IGURE 9 Simulated trajectories for all 11 stocks for a randomly selected individual for 1000 posterior predictive samples representing the
uncertainty (blue lines). Themeasurements of this individual are given as data-points (grey dots)

each combination before averaging. Table 3 reports on each of these

measures using theMAP estimated parameter values.

The first measure is the mean absolute error (MAE), which mea-

sures the average difference between the simulated values and the

actual data points in the features’ original units and ignores the signs.

For instance, the MAE of ADAS-cog-13 was 3.98 points, with a scale

of 0-85. This is relatively high considering that, on average, individ-

uals only increased by one ADAS-cog-13 point per year in the data

(Table 1). However, the SDM performed 11% better than the refer-

ence model and even for models that have point prediction as their

principal aim, ADAS-cog-13 trajectories are very difficult to predict in

ADNI.63

The second measure is the normalizedMAE (nMAE), which normal-

izes the MAE to the mean of the absolute data points. It can therefore

be interpreted as a percentage. For instance, the nMAE of hippocam-

pal (HC) volume of 0.03 means that the average deviation between

the simulated and actual data points was 3% of the average value of

the actual data points, which is very close to the average target value.

Conversely, the nMAE of the functional activities questionnaire (FAQ)

was 0.71, or 71%, which is very far off from the average target value.

The thirdmeasure is a relative error (RE) which compares the RMSE

of the SDM to the RMSE of a reference model. Our reference model

predicts an increase for each individual in the test set with the average

training set slopes for each stock. This RE can also be interpreted as a

percentage. For instance, the total RE of the SDM of 0.92 means that

the SDM had 8% less error than the reference model. Hence, although

the SDM did not generally fit individual deviations from the average

well, it didpredict 8%better than just predicting theaverage (as the ref-

erence model does) despite only using linear links and fitting 11 stocks

simultaneously.

As seen in Table 3, the models with and without prior knowledge

had very similar predictive accuracy, having 8% and 9% less error than

the reference model, respectively. We also checked the differences

between the training and test set errors in each data fold. The training

errors were slightly lower than the test errors, but this difference was

not statistically significant, suggesting that the SDM did not overfit or

underfit the data.

3.7.3 Structure-oriented behavior test

We conducted a structure-oriented behavior test by comparing obser-

vational and interventional meta-analysis evidence to the SDM’s sim-

ulating interventions rankings. We simulated interventions by alterna-

tively addingor subtractingone standarddeviation fromthemodifiable

risk factors. This approach assumes that the population variation
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18 ULEMAN ET AL.

F IGURE 10 Simulated trajectories for all 11 stocks for all individuals for themaximum a posteriori (MAP) parameter values

TABLE 3 Total and per stock predictive accuracy on test data

Type MAE prior nMAE prior RE prior RE no prior

Total – – 0.92 0.91

ADAS-cog-13 (0-85) 3.98 0.30 0.89 0.89

Hippocampal volume (mm3) 215 0.03 0.76 0.76

FDG-PET (g/ml) 0.05 0.05 1.16 1.15

WMHvolume (cm3) 1.41 0.20 1.0 0.96

A-beta csf (pg/ml) 116 0.11 1.13 0.99

FAQ (0-30) 2.38 0.71 0.8 0.79

Morbidity score (0-1) 0.08 0.22 0.96 0.95

GDS (0-15) 1.13 0.69 1.0 0.99

BMI (kg/m2) 0.99 0.04 1.0 0.99

Pulse pressure (mmHg) 11.8 0.20 1.01 1.0

P Tau csf (pg/mL) 2.91 0.11 1.06 0.98

Note: Provided for the maximum a posteriori (MAP) parameter values of the SDM with prior. Mean absolute error (MAE) and normalized MAE (nMAE) are

given, as well as the relative root mean squared error based on the reference model. For comparison, the latter is also given for the model without prior. No

total error is provided for theMAE because the units of the stocks are different and, therefore, not comparable.

represents a certain risk factor’s sensitivity to an intervention and

that the risk factor effects are independent of other nodes’ values.

As such, the selected intervention size of one standard deviation was

arbitrary, as smaller or larger interventions would have resulted in the

same ranking. We considered these assumptions reasonable to obtain

a population-level ranking of modifiable risk factors for validation

purposes.

The observational validation statements were derived as follows.

Livingston et al. report the RR ratios for developing dementia for 12

modifiable risk factors.12 One of these, air pollution, is not contained
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ULEMAN ET AL. 19

TABLE 4 44 Validation statements based on Livingston et al12

Factor Is greater than factor(s)

Education level Excessive alcohol use, physical activity, diabetes

Hearing loss Education level, head trauma, blood pressure,

excessive alcohol use, obesity, smoking, social

relationships, physical activity, diabetes

Head trauma Education level, blood pressure, excessive alcohol

use, obesity, smoking, social relationships,

physical activity, diabetes

Blood pressure Excessive alcohol use, physical activity, diabetes

Obesity Excessive alcohol use, physical activity, diabetes

Smoking Excessive alcohol use, physical activity, diabetes

Depressive

symptoms

Education level, head trauma, blood pressure,

excessive alcohol use, obesity, smoking, social

relationships, physical activity, diabetes

Social

relationships

Excessive alcohol use, physical activity, diabetes

Physical activity Excessive alcohol use

Diabetes Excessive alcohol use, physical activity

in our model and therefore discarded. Based on the reported RRs,

we defined ‘is larger than’ statements for the remaining 11 risk fac-

tors. For instance, depression and hearing loss both have a RR of 1.9,

whereas smoking has a RR of 1.6 and excessive alcohol use of 1.2. One

of our validation statements thus says that depression should have a

larger effect than smoking. Another statement says that depressive

symptoms should have a larger effect than excessive alcohol use. Like-

wise, two other statements say that hearing loss, too, should have

a larger effect than smoking and excessive alcohol use. Yet another

statement says smoking should have a larger effect than excessive

alcohol use. However, no statement concerning depression and hear-

ing loss is defined, as their mean RRs are reported as equal.12 An

overview of all 44 validation statements is given in Table 4. This RR

ranking cannot be directly interpreted causally because it is based on

a meta-analysis of observational studies. However, we reason that,

in the absence of RCT evidence of sufficiently high quality to gener-

ate an intervention-based ranking for many of the risk factors, it can

nevertheless be used to perform a preliminary assessment of the plau-

sibility of the risk factor ranking generated by the SDM. As such, these

observational statements serve as a supplement to the interventional

validation statements based on RCTs.

The ranking results are provided in Figure 11. We compared the

rankings of the SDM’s posterior samples to 1000 random rankings

using a Mann-Whitney U test. From the 44 validation statements,

the SDM correctly answered between 27 and 37 statements (Mann-

Whitney U test: p < 0.001), with the MAP correctly answering 34

statements (77%). For comparison, the model that was fitted without

prior knowledge regarding the polarity of the causal links answered

21 validation statements correctly (48%). Hence, for the observational

validation statements, adding prior knowledge substantially improved

the validity of the SDM.

F IGURE 11 Correctly answered observational validation
statements compared to 1000 random rankings. The y-axis represents
the fraction of rankings that correctly answered a particular number
of statements. The SDMwith prior was assessed using the
intervention effects of 1000 posterior samples, which answered 34
validation statements for themaximum a posteriori (MAP) parameter
values, while themodel without prior (black line) correctly answered
21 statements

The interventional validation statements were derived as follows.

The World Health Organization report on GRADE evidence tables

based on systematic reviews for RCT evidence on 12 modifiable risk

factors.12 The evidence was inconclusive for three of these, namely

tobacco cessation, hearing loss, and alcohol use disorder. For another

four of these, the quality of all the evidencewas low (cognitive stimula-

tion, hypertension) or very low (social activity, depression), suggesting

that the true effect might be, or even probably is, markedly differ-

ent from the estimated effect, respectively. Hence, we omitted these

factors from our validation statements, leaving five: physical activity,

weight reduction, diet, dyslipidemia, and diabetes with moderate qual-

ity evidence. For each of these, the standardized mean differences on

global cognition (if available, since ADAS-cog-13, the main outcome in

this paper, is primarily an index of global cognition) and correspond-

ing average trial durations were reported for specific modalities and,

for some factors, specified to cognitive status, that is, mild cognitive

impairment (MCI) or cognitively normal (CN). When the overarching

conclusion was that no effect could be found, we assumed the esti-

mate to be 0. This was the case for diabetes and dyslipidemia, meaning

we could not distinguish between them in the validation statements.

For the other factors, we took the most appropriate modality given

our selected features, namely aerobic exercise for physical activity,

Mediterranean diet for healthy dietary patterns, and lifestyle-based

weight reduction for obesity.

The effects were then calculated as follows. For physical activity,

the effect of aerobic interventions on cognitive declinewas 0.85 (dura-

tion: 41.5 weeks) in CN and 0.58 (duration: 24 weeks) in MCI. We

thus created a weighted average of these based on the proportion of

CN/MCI in the ADNI data (i.e., 56% MCI, Table 1), which resulted in

an estimated standardized mean effect of 1.18 per year. No distinc-

tion was made between CN and MCI for healthy dietary patterns and
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TABLE 5 Nine validation statements based on theWorld Health
Organization29

Factor Is greater than factor(s)

Physical activity Obesity, healthy dietary patterns, diabetes,

dyslipidemia

Obesity Healthy dietary patterns, diabetes, dyslipidemia

Healthy dietary

patterns

Diabetes, dyslipidemia

F IGURE 12 Correctly answered interventional validation
statements compared to 1000 random rankings. The y-axis represents
the fraction of rankings that correctly answered a particular number
of statements. The SDMwith prior was assessed using the
intervention effects of 1000 posterior samples, which correctly
answered seven validation statements for themaximum a posteriori
(MAP) parameter values, while themodel without prior (black line)
correctly answered six statements

obesity. Hence, for healthy dietary patterns, the effect of Mediter-

ranean diet was 0.24, normalized by its duration of 4.1 years: 0.05

per year. Finally, for obesity, the effect of weight reduction was not

measured on global cognition but rather on attention (effect: 0.44,

duration: 20 weeks), executive function (effect: 0), memory (effect:

0.35, duration: 14 weeks), motor speed (effect: 0.16, duration not

provided), and language (effect: 0.21, duration: 22 weeks). Hence,

assuming an average duration of 0.17 for motor speed, we obtained an

effect of 0.65. As can be seen, these estimates are sufficiently different

and are thus likely robust against small differences in how they were

derived (e.g., averaging the results differently).We then defined nine ‘is

larger than’ statements basedon these estimates for the remaining five

risk factors. These are provided in Table 5.

The ranking results are provided in Figure 12. From the nine val-

idation statements, the SDM correctly answered between three and

eight statements correctly (Mann-Whitney U test: p < 0.001), and the

MAP correctly answered seven statements (78%). For comparison, the

model that was fitted without prior knowledge regarding the polarity

of the causal links answered six validation statements correctly (67%).

Hence, also for the interventional validation statements, adding prior

knowledge improved the validity of the SDM.
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